Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Transl Med ; 14(628): eabj7521, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1483988

ABSTRACT

The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.


Subject(s)
COVID-19 , ADAM Proteins , Artificial Intelligence , Humans , Intensive Care Units , Membrane Proteins , Respiration, Artificial , SARS-CoV-2
2.
J Fungi (Basel) ; 7(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325719

ABSTRACT

Cases of Pneumocystis jirovecii pneumonia (PCP) in patients suffering from COVID-19 were described in patients with various comorbidities and outcomes. The diagnosis of PCP in these patients is difficult due to clinical and radiological similarities. We carried out this study in order to better describe potentially at-risk patients and their outcomes. We retrospectively analyzed all patients with a P. jirovecii PCR performed in bronchoalveolar lavage fluid, tracheal aspirate, or sputum within a month after the COVID-19 diagnosis. Fifty-seven patients with COVID-19 infection were tested for P. jirovecii. Among 57 patients with COVID-19, four patients had a concomitant positive P. jirovecii PCR. These four patients were elderly with a mean age of 78. Two patients were immunocompromised, and the two others presented only diabetes mellitus. Three patients presented an ARDS requiring transfer to the ICU and mechanical ventilation. All patients presented lymphocytopenia. Three patients had probable PCP, and one had proven PCP. All patients died within two months after hospital admission. These co-infections are rare but severe, therefore, PCP should be considered in case of worsening of the condition of patients with severe COVID-19.

3.
Trials ; 22(1): 131, 2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1083070

ABSTRACT

OBJECTIVES: The main objective of this study is to evaluate the effect of intravenous lidocaine on gas exchange and inflammation in acute respiratory distress syndrome due or not to Covid-19 pneumonia. TRIAL DESIGN: This is a prospective monocentric, randomized, quadruple-blinded and placebo-controlled superiority trial. This phase 3 clinical study is based on two parallel groups received either intravenous lidocaine 2% or intravenous NaCl 0.9%. PARTICIPANTS: This study has been conducted at the University Hospitals of Strasbourg (medical and surgical Intensive Care Units in Hautepierre Hospital) since the 4th November 2020. The participants are 18 years-old and older, hospitalized in ICU for a moderate to severe ARDS according to the Berlin definition; they have to be intubated and sedated for mechanical protective ventilation. All participants are affiliated to the French Social security system and a dosage of beta HCG has to be negative for women of child bearing age . For the Covid-19 subgroup, the SARS-CoV2 infection is proved by RT-PCR <7 days before admission and/or another approved diagnostic technique and/or typical CT appearance pneumonia. The data are prospectively collected in e-Case Report Forms and extracted from clinical files. INTERVENTION AND COMPARATOR: The participants are randomised in two parallel groups with a 1:1 ratio. In the experimental group, patients receive intravenous lidocaine 2% (20mg/mL) (from FRESENIUS KABI France); the infusion protocol provide a bolus of 1 mg/kg (ideal weight), followed by 3 mg/kg/h for the first hour, 1.5 mg/kg/h for the second hour, 0.72 mg/kg/h for the next 22 hours and then 0.6 mg/kg/h for 14 days at most or 24 hours after extubation or ventilator-weaning. The patients in the control group receive intravenous NaCl 0.9% (9 mg/mL) (from Aguettant, France) as placebo comparator; the infusion protocol provide a bolus of 0.05 mL/kg (ideal weight), followed by 0.15 mL/kg/h for the first hour, 0.075 mL/kg/h for the second hour, 0.036 mL/kg/h for the next 22 hours, and the 0.03 mL/kg/h for up to 14 days or 24 hours after extubation or ventilator-weaning. Lidocaine level is assessed at H4, D2, D7 and D14 to prevent local anesthetics systemic toxicity. Clinical data and biological samples are collected to assess disease progression. MAIN OUTCOMES: The primary outcome is the evolution of alveolar-capillary gas exchange measured by the PaO2/FiO2 ratio after two days of treatment. The secondary endpoints of the study include the following: Evolution of PaO2/FiO2 ratio at admission and after 21 days of treatment Number of ventilator-free days Anti-inflammatory effects by dosing inflammatory markers at different timepoints (ferritin, bicarbonate, CRP, PCT, LDH, IL-6, Troponin HS, triglycerides, complete blood count, lymphocytes) Anti-thrombotic effects by dosing platelets, aPTT, fibrinogen, D-dimers, viscoelastic testing and identification of all thromboembolic events up to 4 weeks. Plasmatic concentration of lidocaine and albumin Incidence of adverse events like cardiac rhythm disorders, need of vasopressors, any modification of the QRS, QTc or PR intervals every day Ileus recovery time Consumption of hypnotics, opioids, neuromuscular blockers. Lengths of stay in the ICU, incidence of reintubation and complications due to intensive care unit care (mortality until 90 days, pneumothorax, bacterial pneumopathy, bronchospasm, cardiogenic shock, acute renal failure, need of renal dialysis, delirium, atrial fibrillation, stroke (CAM-ICU score), tetraplegia (MCR score)). Incidence of cough and sore throat at extubation or ventilator-weaning and within 24 hours. All these outcomes will be evaluated according to positivity to Sars-Cov-2. RANDOMISATION: The participants who meet the inclusion criteria and have signed written informed consent will be randomly allocated using a computer-generated random number to either intervention group or control group. The distribution ratio of the two groups will be 1:1, with a stratification according to positivity to Sars-Cov-2. BLINDING (MASKING): All participants, care providers, investigator and outcomes assessor are blinded. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): We planned to randomize fifty participants in each group, 100 participants total. TRIAL STATUS: The amended protocol version 2.1 was approved by the Ethics Committee "Comité de Protection des Personnes Sud-Méditerranée II on January 8, 2021 and by the Commission Nationale de l'Informatique et des Libertés (CNIL) on November 10, 2020. The study is currently recruiting participants; the recruitment started in November 2020 and the planned recruitment period is three years. TRIAL REGISTRATION: The trial was registered on clinicaltrials.gov on October 30, 2020 and identified by number NCT04609865 . FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 Drug Treatment , Lidocaine/therapeutic use , Respiratory Distress Syndrome/drug therapy , Voltage-Gated Sodium Channel Blockers/therapeutic use , Administration, Intravenous , COVID-19/blood , COVID-19/physiopathology , Clinical Trials, Phase III as Topic , Equivalence Trials as Topic , Humans , Inflammation/blood , Pulmonary Gas Exchange , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL